DESCRIPTION

The M5283P has 2 channels of built-in high-performance VCA designed to produce a wide dynamic range, low distortion ratio, and high S/N ratio.

The IC is an optimum device for Hi-Fi stereo sets, cassette tape recoders, Hi-Fi TV sets, VCR, and electronic musical instruments.

FEATURES

-	Low	distortion	. THD =	0.003 %(\/a =	1\/rmc)
	I DW	OISTOURGE		・ひしいふっかしゃのー	I VIIIIS)

- Independent control terminal
- 2 channels of VCA are built-in ch1 and ch2 can be controlled separately by Vc control
- Maximum input voltage is large · · · · · · $V_i = 7V_i \text{rms}$ (when THD = 1 %)
- Large ATT range ------ 0~ 90dB
- ■S/N (dynamic range) is large ······· 85dB

(V:=150mVrms · IHF-A filter)

Outline 16P4

2.54mm pitch 300mil DIP (6.3mm × 19.0mm × 3.3mm)

RECOMMENDED OPERATING CONDITION

M5283P

DUAL VCA IC FOR HI-FI ELECTRONIC VOLUME CONTROL

PIN DESCRIPTION

Pin No.	Name	Symbol	Function		
①	(+) power terminal on ch1 side	(+)Vac	This is (+) supply voltage terminal on ch1 side. Connect to pin ® externally.		
2	ch1 control	Vcı	It controls signal on ch' side. It controls signal by providing this terminal with voltage of $0\sim5V$. Approximately 25nA (TYP) is necessary as bias current.		
3	ch1 output	OUT1	This is an output terminal on ch1 side.		
<u>4</u>	(-) power	(-)Vac	pin (a), pin (b), pin (b) and pin (b) are connected internally. Add copper film for radiation at the foot of these pins for use.		
6	ch1 ground	GND1	This is a ground terminal on ch1 side. Connect to GND2 (pin 11) externally. Connect to GND wiring.		
7	Not connected	NC	This terminal is kept OPEN.		
8	ch1 input	IN1	This is an input terminal on ch1 side. Insert a resistor of approximately $47k\sim100k\Omega$ between GND and this input terminal (pin ®) for DC bias.		
9	ch2 input	IN2	This is an input terminal on ch2 side. Insert a resistor of approximately $47k\sim100k\Omega$ between GND and this input terminal (pin (9)) for DC bias.		
10	Not connected	NC	This terminal is kept OPEN.		
0	ch2 ground	GND.	This is a ground terminal on ch2 side. Connect to GND1 (pin ®) externally. Connect to GND wiring.		
(2) (3)	(-) power	(-)Voc	pin (4), pin (5), pin (6) and pin (6) are connected internally. Add copper film for radiation at the foot of these pins for use.		
140	ch2 output	OUT2	This is an output terminal on ch2 side.		
(1)	ch2 control	Vc2	It controls signal on ch2 side. It controls signal by providing this terminal with voltage of 0~5V, Approximately 25nA (TYP) is necessary as bias current.		
16	(+) power terminal on ch2 side	(+)Voc	This is (+) supply voltage terminal on ch2 side. Connect to pin ① externally.		

ABSOLUTE MAXIMUM RATINGS (Ta = 25 ℃, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	± 18	V
Pd	Power dissipation (Ta = 25 ℃)	2.0 * *	W
Vc	Control voltage	0~Vcc - 1.5	V
Topr	Operating temperature	-20~+75	ъ
Tstg	Storage temperature	-40~+125	°C

^{**:} Add copper film of 400mm²

ELECTRICAL CHARACTERISTICS (Vcc = ± 15V, Vc = 5V, Ta = 25 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		
Symbol				Тур	Max	Unit
lcc	Circuit current	Vi = 0		34	50	mA
Vом	Maximum output voltage	$V_C = 5V$, THD = 1%, $f = 1kHz$, $R_L = 10k \Omega$	4	5		Vrms
Vім	Maximum input voltage	Vc = 3V, THD = 1%, $f = 1kHz$	6	7	-	Vrms
ATT	Attenuation error	$V_C = 5V$, $V_i = 0$ dBm, $f = 1$ kHz	- 2.3	- 0.3	+ 1.7	dB
Δ ΑΤΤ	Attenuation deviation between charnels	Vc = 5V, $Vi = 0dBm$, $f = 1kHz$	_	± 0.1	± 3.0	dB
АТТм	Maximum attenuation	Vc = OV, $Vi = OdBm$, $f = 1kHz$	80	95	_	dB
THD	Total harmonic distortion	f = 1kHz, Vo = 1Vrms, Vc = 5V		0.003	0.05	%
CS	Channel separation	$f = 1kHz$, $V_C = 5V$, $V_i = 0dBm$	_	85	_	dB
Vno	Output noise voltage	R _g = 0, V _C = 5V, IHF-A FILTER	-	6.5	30	μVrms
lvc	Control bias current	$V_i = 0$, $V_C = 5V$	_	25	500	nA

TYPICAL CHARACTERISTICS

NOTES

Example of layout of PC board

Circuit current for M5283P is large to improve various characteristics such as total harmonic distortion and noise voltage.(typ = 34mA). It consumes, therefore, large power and it is necessary to take thermal deration into consideration in layout of PC board. Add copper film as widely as possible at the foot of - Vcc terminal to improve radiation (thermal diffusion) of IC.

Power dissipation P_d becomes 1.3W when copper film cannot be added widely to improve radiation or when copper film for radiation cannot be applied. Calculate maximum power by $\pm V_{CC} \times I_{CCmax}$ and take ambient temperature and V_{CC} applied voltage into consideration for use within the above limit of P_d .

(Note 2) + Vcc terminal pin ①, pin ⑥, and GND terminal pin ⑥, pin ① are not connected internally. Connect them externally before use.

(Note 3) Control terminal (pin ②, pin ⑤) sinks approximately 25nA (typ) of bias current.

(Note 4) M5283P becomes OdB and one time amplifier when +5V is applied to the control terminal (pin ②), pin ⑤). Signal attenuates by decreasing the voltage of control terminal.

(Note 5) Input signal is output to the output terminal with equal phase.

Example of application circuit

Application block diagram

PC BOARD FOR CIRCUIT EXPERIMENT

PC BOARD WIRING DIAGRAM (ON COPPER FILM SIDE)

(ON THE SIDE OF PARTS INSERTION)

